### 4-byte Integer Hashing

The hashes on this page (with the possible exception of HashMap.java's) are all public domain. So are the ones on Thomas Wang's page. Thomas recommends citing the author and page when using them.

Thomas Wang has an integer hash using multiplication that's faster than any of mine on my Core 2 duo using gcc -O3, and it passes my favorite sanity tests well. I've had reports it doesn't do well with integer sequences with a multiple of 34.

 ```uint32_t hash( uint32_t a) a = (a ^ 61) ^ (a >> 16); a = a + (a << 3); a = a ^ (a >> 4); a = a * 0x27d4eb2d; a = a ^ (a >> 15); return a; } ```
Thomas has 64-bit integer hashes too. I don't have any of those yet.

Here's a way to do it in 6 shifts:

 ```uint32_t hash( uint32_t a) { a = (a+0x7ed55d16) + (a<<12); a = (a^0xc761c23c) ^ (a>>19); a = (a+0x165667b1) + (a<<5); a = (a+0xd3a2646c) ^ (a<<9); a = (a+0xfd7046c5) + (a<<3); a = (a^0xb55a4f09) ^ (a>>16); return a; } ```

Or 7 shifts, if you don't like adding those big magic constants:

 ```uint32_t hash( uint32_t a) { a -= (a<<6); a ^= (a>>17); a -= (a<<9); a ^= (a<<4); a -= (a<<3); a ^= (a<<10); a ^= (a>>15); return a; } ```

Thomas Wang has a function that does it in 6 shifts (provided you use the low bits, hash & (SIZE-1), rather than the high bits if you can't use the whole value):

 ```uint32_t hashint( uint32_t a) { a += ~(a<<15); a ^= (a>>10); a += (a<<3); a ^= (a>>6); a += ~(a<<11); a ^= (a>>16); } ```

Here's a 5-shift one where you have to use the high bits, hash >> (32-logSize), because the low bits are hardly mixed at all:

 ```uint32_t hashint( uint32_t a) { a = (a+0x479ab41d) + (a<<8); a = (a^0xe4aa10ce) ^ (a>>5); a = (a+0x9942f0a6) - (a<<14); a = (a^0x5aedd67d) ^ (a>>3); a = (a+0x17bea992) + (a<<7); return a; } ```

Here's one that takes 4 shifts. You need to use the bottom bits, and you need to use at least the bottom 11 bits. It doesn't achieve avalanche at the high or the low end. It does pass my integer sequences tests, and all settings of any set of 4 bits usually maps to 16 distinct values in bottom 11 bits.

 ```uint32_t hashint( uint32_t a) { a = (a^0xdeadbeef) + (a<<4); a = a ^ (a>>10); a = a + (a<<7); a = a ^ (a>>13); return a; } ```

And this one isn't too bad, provided you promise to use at least the 17 lowest bits. Passes the integer sequence and 4-bit tests.

 ```uint32_t hashint( uint32_t a) { a = a ^ (a>>4); a = (a^0xdeadbeef) + (a<<5); a = a ^ (a>>11); return a; } ```

### More Wordy Stuff

Adam Zell points out that this hash is used by the HashMap.java:

 ```private static int newHash(int h) { // This function ensures that hashCodes that differ only by // constant multiples at each bit position have a bounded // number of collisions (approximately 8 at default load factor). h ^= (h >>> 20) ^ (h >>> 12); return h ^ (h >>> 7) ^ (h >>> 4); } ```
Although this hash leaves something to be desired (h & 2047 uses only 1/8 of the buckets for sequences incremented by 8), it does bring up an interesting point: full avalanche is stronger than what you really need for a hash function. All you really need is that the entropy in your keys be represented in the bits of the hash value that you use. Often you can show this by matching every differing input bit to a distinct bit that it changes in the portion of the hash value that you use.

One very non-avalanchy example of this is CRC hashing: every input bit affects only some output bits, the ones it affects it changes 100% of the time, and every input bit affects a different set of output bits. If the input bits that differ can be matched to distinct bits that you use in the hash value, you're golden. Otherwise you're not.

### 4-byte integer hash, half avalanche

Full avalanche says that differences in any input bit can cause differences in any output bit. A weaker property is also good enough for integer hashes if you always use the high bits of a hash value: every input bit affects its own position and every higher position. I'll call this half avalanche. (Multiplication is like this, in that every bit affects only itself and higher bits. But multiplication can't cause every bit to affect EVERY higher bit, especially if you measure "affect" by both - and ^.) Half-avalanche is sufficient: if you use the high n bits and hash 2n keys that cover all possible values of n input bits, all those bit positions will affect all n high bits, so you can reach up to 2n distinct hash values. It's also sometimes necessary: if you use the high n+1 bits, and the high n input bits only affect their position and greater, and you take the 2n+1 keys differing in the high n bits plus one other bit, then the only way to get over 2n hash values is if that one other input bit affects position n+1 from the top. For all n less than itself. So it has to affect itself and all higher bits.

Actually, that wasn't quite right. Half-avalanche says that an input bit will change its output bit (and all higher output bits) half the time. But if the later output bits are all dedicates to representing other input bits, you want this output bit to be affected 100% of the time by this input bit, not 50% of the time. This doesn't entirely kill the idea though. If every bit affects itself and all higher bits, plus a couple lower bits, and you use just the high-order bits, then the lowest high-order bit you use still contains entropy from several differing input bits. So it might work. Hum. Better check how this does in practice!

Similarly for low-order bits, it would be enough for every input bit to affect only its own position and all lower bits in the output (plus the next few higher ones). Half-avalanche is easier to achieve for high-order bits than low-order bits because a*=k (for odd k), a+=(a<<k), a-=(a<<k), a^=(a<<k) are all permutations that affect higher bits, but only a^=(a>>k) is a permutation that affects lower bits. (There's also table lookup, but unless you get a lot of parallelism that's going to be slower than shifts.)

Here's a 5-shift function that does half-avalanche in the high bits:

 ```uint32_t half_avalanche( uint32_t a) { a = (a+0x479ab41d) + (a<<8); a = (a^0xe4aa10ce) ^ (a>>5); a = (a+0x9942f0a6) - (a<<14); a = (a^0x5aedd67d) ^ (a>>3); a = (a+0x17bea992) + (a<<7); return a; } ```

Every input bit affects itself and all higher output bits, plus a few lower output bits. I hashed sequences of n consecutive integers into an n-bucket hash table, for n being the powers of 2 21 .. 220, starting at 0, incremented by odd numbers 1..15, and it did OK for all of them. Also, for "differ" defined by +, -, ^, or ^~, for nearly-zero or random bases, inputs that differ in any bit or pair of input bits will change each equal or higher output bit position between 1/4 and 3/4 of the time. Here's a table of how the ith input bit (rows) affects the jth output bit (columns) in that hash (single bit differences, differ defined as ^, with a random base):

 51 46 48 51 55 52 45 51 53 50 50 50 50 50 49 50 50 51 50 50 50 49 50 50 51 50 56 50 44 65 50 44 51 32 46 52 54 55 55 51 45 51 50 53 51 50 50 46 50 50 53 51 50 50 48 50 50 52 50 56 50 44 65 50 52 47 38 50 50 55 48 49 51 47 50 50 51 51 50 50 47 50 50 53 50 50 50 48 50 50 52 50 56 50 44 65 85 60 43 33 51 48 57 51 51 50 45 51 53 53 50 50 50 45 50 51 55 50 50 50 47 50 50 53 50 56 50 44 15 93 58 45 32 50 48 58 50 51 50 50 49 50 50 50 50 50 50 50 51 50 50 50 50 47 50 50 53 50 56 50 54 61 62 53 51 39 49 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 49 50 50 51 50 56 51 68 40 52 54 40 38 50 51 51 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 48 50 50 52 50 51 32 81 53 55 42 48 50 50 53 50 50 49 50 50 49 50 50 51 50 50 50 50 50 50 50 50 50 47 50 50 50 100 50 44 64 55 54 45 54 50 50 53 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 46 50 50 0 100 50 47 60 55 51 49 63 51 49 50 50 50 50 50 50 49 50 50 50 50 50 50 50 50 50 50 50 50 42 50 0 0 100 50 48 64 50 49 51 61 50 50 52 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 47 42 0 0 0 100 51 43 63 49 58 50 60 50 50 53 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 48 0 0 0 0 100 50 48 60 50 54 49 49 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 0 0 0 0 0 100 50 45 70 50 54 51 56 50 50 52 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 0 0 0 0 0 0 100 50 37 74 50 59 50 56 50 50 52 50 50 50 50 50 50 50 50 50 50 50 50 51 50 50 0 0 0 0 0 0 0 100 50 38 72 50 60 50 56 50 50 52 50 50 50 50 50 50 50 50 50 50 50 50 50 50 0 0 0 0 0 0 0 0 100 50 40 67 50 61 50 56 50 50 52 50 50 50 50 50 50 50 50 50 50 50 50 50 0 0 0 0 0 0 0 0 0 100 50 50 62 50 51 50 55 50 50 51 50 50 50 50 50 50 50 50 50 50 50 51 0 0 0 0 0 0 0 0 0 0 100 50 43 67 50 57 50 56 50 50 52 50 50 50 50 50 50 50 51 50 53 50 0 0 0 0 0 0 0 0 0 0 0 100 50 44 66 50 56 50 56 50 50 52 50 50 50 50 50 50 50 50 50 52 0 0 0 0 0 0 0 0 0 0 0 0 100 50 44 66 50 57 50 56 50 50 52 50 50 50 50 50 50 50 50 50 0 0 0 0 0 0 0 0 0 0 0 0 0 100 50 44 66 50 57 50 56 50 50 51 50 50 50 50 50 50 50 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 50 44 66 50 57 50 56 50 50 52 50 50 50 50 45 50 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 50 44 66 50 57 50 56 50 50 53 50 50 50 50 40 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 50 44 66 50 57 50 56 50 50 54 50 55 50 44 66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 50 44 66 50 57 50 56 50 50 54 50 56 50 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 50 44 66 50 57 50 56 50 50 54 50 55 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 50 44 66 50 57 50 60 50 50 55 50 55 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 50 44 66 50 57 50 52 50 51 53 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 50 44 66 50 57 50 61 50 50 51 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 50 44 70 50 57 50 62 50 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 50 38 75 50 62 50 73 50

If you use high-order bits for hash values, adding a bit to the hash value to double the size of the hash table will add a low-order bit, so old bucket 0 maps to the new 0,1, old bucket 1 maps to the new 2,3, and so forth. They overlap. It's not as nice as the low-order bits, where the new buckets are all beyond the end of the old table. Also, using the n high-order bits is done by (a>>(32-n)), instead of (a&((1<<n)-1)), note that >> takes 2 cycles while & takes only 1. But, on the plus side, if you use high-order bits for buckets and order keys inside a bucket by the full hash value, and you split the bucket, all the keys in the low bucket precede all the keys in the high bucket (Shalev '03, split-ordered lists). Incrementally splitting the table is still feasible if you split high buckets before low buckets; that way old buckets will be empty by the time new buckets take their place.

### 4-byte integer hash, full avalanche

I was able to do it in 6 shifts.

 ```uint32_t hash( uint32_t a) { a = (a+0x7ed55d16) + (a<<12); a = (a^0xc761c23c) ^ (a>>19); a = (a+0x165667b1) + (a<<5); a = (a+0xd3a2646c) ^ (a<<9); a = (a+0xfd7046c5) + (a<<3); a = (a^0xb55a4f09) ^ (a>>16); return a; } ```
These magic constants also worked: 0x7fb9b1ee, 0xab35dd63, 0x41ed960d, 0xc7d0125e, 0x071f9f8f, 0x55ab55b9 .

For one or two bit diffs, for "diff" defined as subtraction or xor, for random or nearly-zero bases, every output bit changes with probability between 1/4 and 3/4. I also hashed integer sequences incremented by odd 1..31 times powers of two; low bits did marvelously, high bits did sorta OK. Here's the table for one-bit diffs on random bases with "diff" defined as XOR:

 50 47 50 51 50 50 50 49 42 50 50 50 49 50 50 50 50 47 50 49 58 50 51 46 62 50 55 50 45 63 51 45 50 50 50 50 50 50 50 50 50 48 50 50 50 50 50 50 50 50 50 50 50 53 50 51 47 59 50 52 50 48 63 51 54 50 49 50 50 51 49 50 50 49 45 50 50 50 47 50 54 50 51 46 50 48 58 49 50 43 64 51 59 49 43 70 50 52 50 50 50 50 51 49 50 50 50 47 50 50 50 49 50 52 50 51 48 50 49 54 50 51 46 63 51 58 51 42 42 50 50 50 50 50 50 50 49 50 50 50 47 50 50 50 41 50 50 50 50 50 50 50 55 50 50 48 60 50 52 50 48 43 50 51 50 50 50 50 51 49 50 50 50 46 50 50 46 44 50 51 50 50 46 50 48 56 51 52 44 67 50 60 49 48 43 50 51 50 50 50 50 51 49 50 50 50 47 50 49 49 42 50 52 50 50 45 50 48 60 49 51 44 65 51 50 50 50 53 50 49 50 50 50 50 50 50 50 50 50 50 50 50 50 47 50 54 50 51 45 50 47 59 49 51 46 64 50 50 50 50 51 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 49 50 50 50 50 49 50 50 53 50 50 47 52 50 50 50 50 52 50 50 50 50 50 50 50 50 50 50 52 50 50 50 50 48 50 52 50 50 46 50 49 55 50 50 50 51 50 50 50 50 52 50 49 50 50 50 50 50 50 50 50 51 50 50 50 50 48 50 50 50 50 49 50 50 53 50 47 50 50 50 50 50 50 52 50 49 50 50 50 50 50 50 47 50 50 50 50 50 50 48 50 51 50 50 49 50 50 56 50 47 50 51 50 50 50 50 52 50 49 50 50 50 50 50 50 47 50 51 50 50 50 50 48 50 53 50 50 47 50 49 51 50 49 50 50 50 50 50 50 52 50 50 50 50 50 50 51 50 49 50 50 50 50 50 50 48 51 51 50 50 47 50 50 51 51 46 50 52 50 51 50 50 52 50 49 50 50 50 50 51 51 46 50 52 50 49 50 50 48 51 50 51 51 49 50 50 50 51 46 50 52 50 50 50 50 51 50 50 50 50 50 50 50 51 46 50 52 50 50 49 50 48 50 53 49 51 54 50 50 50 50 49 50 50 50 50 50 50 51 50 50 50 55 50 50 50 50 49 50 50 50 50 50 50 48 50 50 50 50 54 50 50 50 50 46 50 52 50 50 50 50 51 50 50 50 54 50 50 50 50 45 50 53 50 50 50 50 47 50 50 52 50 53 50 50 50 50 46 50 51 50 50 50 50 51 50 53 50 53 50 50 50 50 45 50 52 50 50 49 50 48 50 50 48 49 49 50 50 50 50 54 50 50 50 50 50 50 50 50 45 50 51 50 50 49 51 43 50 54 50 49 49 50 45 50 55 43 50 46 50 52 47 50 47 50 50 53 50 50 51 50 45 65 51 55 50 48 63 50 52 50 47 63 50 50 46 57 50 56 51 50 46 50 52 48 50 47 50 50 54 50 50 57 50 44 66 51 56 50 42 64 50 59 50 42 65 49 50 51 60 50 56 51 50 46 50 52 47 50 48 50 50 53 50 51 60 50 44 66 51 55 50 47 62 50 52 50 47 62 50 60 50 51 50 55 50 51 46 50 52 50 50 48 50 50 51 60 50 51 50 45 64 51 55 50 48 63 50 52 50 48 63 45 63 51 55 50 56 51 50 45 50 52 50 50 47 50 50 45 63 51 55 50 44 65 51 55 50 42 69 51 59 49 42 49 45 63 50 56 50 55 50 51 46 50 52 50 50 47 50 49 45 63 50 56 50 45 65 51 55 50 42 63 51 59 51 49 49 45 63 50 56 50 56 50 51 47 50 52 50 50 48 49 49 45 63 50 56 50 44 65 51 55 50 48 63 50 52 65 49 50 45 64 50 56 50 56 50 50 47 50 51 50 50 65 49 50 45 64 50 56 50 44 65 51 55 50 42 69 51 45 65 49 50 45 64 51 56 50 55 50 50 47 50 51 49 45 65 49 50 45 64 51 56 50 45 65 51 55 50 42 64 50 44 66 49 50 45 63 51 56 50 56 50 50 47 50 51 50 44 66 49 50 45 63 51 56 50 44 65 51 55 50 48 55 49 44 68 50 50 45 65 50 55 50 56 50 50 47 50 55 49 44 68 50 50 45 65 50 55 50 44 67 51 55 50 51 60 50 39 73 49 52 43 70 51 60 50 60 51 50 45 51 60 50 39 73 49 52 43 70 51 60 50 40 72 51 60

If you don't like big magic constants, here's another hash with 7 shifts:

 ```uint32_t hashint( uint32_t a) { a -= (a<<6); a ^= (a>>17); a -= (a<<9); a ^= (a<<4); a -= (a<<3); a ^= (a<<10); a ^= (a>>15); return a; } ```
I've confirmed this does well with sequences incremented by common amounts whether you use the high or low bits of the hash. And it does avalanche if one or two input bits differ, for a variety of base input values, with "differ" defined as + ^ - or ~^. For one-bit input differences on top of a random base value with "differ" defined as ^, each input bit changes each output bit with probability between .39 and .73 (for random bases with diff defined as XOR). Specifically, this is the percentage of the times the ith input bit (rows) changed the jth output bit (columns):
 50 50 50 50 50 50 50 50 50 51 50 50 50 49 50 50 51 50 50 50 50 50 45 50 51 51 49 50 55 51 52 45 50 50 50 50 50 50 50 50 49 50 51 50 50 50 49 50 50 50 50 50 50 50 50 46 50 51 50 49 50 55 51 52 49 50 50 50 50 49 50 50 50 49 50 51 50 50 50 50 50 50 50 50 51 51 50 50 45 50 51 51 49 50 55 51 55 49 50 50 49 50 50 50 50 50 49 50 51 50 51 50 50 50 50 51 50 51 50 50 50 47 50 50 49 48 50 55 51 54 49 50 50 50 50 50 50 50 50 50 50 51 50 50 50 49 50 50 51 50 50 50 50 50 47 50 50 50 48 50 50 51 54 49 50 50 50 50 50 50 50 50 50 50 51 50 50 54 49 50 50 51 50 51 50 50 50 47 50 50 50 48 44 50 50 51 50 50 50 50 50 50 50 50 50 50 50 50 50 50 51 50 50 50 51 50 50 50 50 50 48 50 50 50 49 44 50 50 51 50 50 50 50 50 50 50 50 50 50 50 50 50 50 51 50 50 50 50 50 50 50 50 50 48 50 50 50 49 44 50 50 52 50 50 50 50 50 50 50 50 50 50 50 44 50 50 52 50 51 50 51 50 50 50 50 50 48 50 54 50 50 47 50 50 52 49 50 50 50 50 50 50 50 50 50 50 47 50 50 52 50 50 50 51 50 50 50 50 50 48 51 52 50 50 48 50 50 51 50 50 50 50 50 50 50 50 50 50 50 49 50 50 51 50 50 50 50 50 50 51 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 51 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 51 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 51 50 51 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 51 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 52 49 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 52 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 52 49 50 50 50 50 50 50 50 50 50 50 50 50 50 52 49 50 50 50 50 50 50 50 50 50 50 50 50 50 44 50 50 51 49 50 50 49 50 50 50 50 50 50 50 50 50 50 51 49 50 50 51 50 50 50 50 50 50 50 50 50 49 43 50 50 51 49 50 50 50 50 50 50 50 50 50 50 50 50 50 51 49 50 50 50 50 50 50 50 50 50 50 50 50 49 41 50 50 52 50 50 50 50 50 50 50 50 50 50 50 41 50 50 52 50 50 50 51 50 50 50 50 50 50 50 44 66 48 58 48 50 53 49 50 50 50 50 50 50 49 50 51 48 58 48 50 53 49 50 50 53 49 50 52 49 50 49 52 45 65 48 59 48 50 53 49 50 49 49 50 50 50 49 50 65 48 59 48 50 53 49 50 51 53 49 50 51 48 50 50 52 45 66 48 59 48 50 53 50 50 50 49 50 50 50 49 45 66 48 59 48 50 53 50 50 50 53 49 50 52 49 65 50 52 44 66 48 59 47 50 53 49 50 49 50 50 50 50 52 44 66 48 59 47 50 53 49 50 51 53 49 50 51 45 68 50 52 43 68 48 59 48 51 53 50 50 49 50 50 50 50 52 43 68 48 59 48 51 53 50 50 51 53 49 50 49 39 73 51 53 41 73 47 65 45 50 55 49 50 49 49 50 73 51 53 41 73 47 65 45 50 55 49 50 51 54 48

The following operations and shifts cause inputs that differ in 1 or 2 bits to differ with probability between 1/4 and 3/4 in each output bit. (k=1..31 is += <<k, k=33..63 is -= <<(k-32), 65..95 is ^= <<(k-64), and 97..127 is ^= >>(k-96).) I put a * by the line that represents the hash above.

 ``` 38 113 41 68 35 74 111 * 38 113 42 69 35 73 112 38 114 9 100 35 107 46 38 114 11 66 8 68 112 38 114 42 69 35 73 112 38 114 78 37 71 35 111 39 113 41 68 2 74 112 39 114 9 101 2 107 17 39 114 9 101 2 107 49 39 114 37 99 39 109 50 39 115 36 67 38 44 112 39 115 37 70 35 110 11 39 115 41 74 36 67 111 39 116 4 104 6 107 16 39 116 10 101 8 75 113 40 113 12 99 39 69 112 40 113 13 99 6 69 113 40 113 38 101 2 106 16 40 113 38 101 2 106 48 40 114 3 102 8 109 15 40 114 37 99 7 77 113 41 113 11 100 7 69 111 42 114 44 99 38 72 113 43 115 7 101 3 109 48 44 114 36 105 38 108 16 44 114 37 102 35 107 16 44 114 41 101 2 109 16 45 113 37 102 3 108 47 45 113 37 105 35 104 17 45 113 37 105 35 104 47 45 113 39 99 37 76 111 45 113 42 101 2 109 46 45 113 42 101 2 109 50 46 113 42 101 35 110 47 46 113 42 101 35 110 50 ```

Another hash is Thomas Wang's function,

 ```uint32_t hashint( uint32_t a) { a += ~(a<<15); a ^= (a>>10); a += (a<<3); a ^= (a>>6); a += ~(a<<11); a ^= (a>>16); } ```
I got the idea of adding a constant from looking at what affect his ~ had. His function passed only half of my tests for full avalanche. If you use it, the low bits are mixed better than the high bits. The low bits do quite well on sequences incremented by a constant amount. For random bases and diff defined as XOR, it did kinda OK, every input bit affects every output bit with probability between .36 and .76, specifically:
 50 49 50 50 50 50 50 54 49 49 51 50 50 50 50 50 50 50 53 50 50 50 45 63 51 45 65 50 43 67 50 45 50 50 50 48 50 50 50 50 55 49 50 50 50 50 50 50 50 50 50 54 50 50 50 45 63 51 45 65 50 43 67 50 50 50 50 50 47 50 50 50 49 56 49 50 50 50 50 50 49 50 50 50 55 49 50 50 45 63 50 45 65 50 43 67 50 50 50 50 50 48 50 50 50 49 56 50 50 50 50 50 50 49 49 50 50 55 50 50 50 45 63 51 45 65 50 43 50 50 50 50 50 50 48 50 50 50 49 53 50 50 50 50 50 50 50 49 50 50 55 50 50 50 45 63 51 45 65 50 50 50 50 50 50 50 50 48 50 50 50 50 53 50 50 50 50 50 50 50 49 50 50 55 49 50 50 45 64 50 45 64 50 50 50 50 50 50 50 50 47 50 50 50 50 51 50 50 50 50 50 50 50 49 50 50 54 50 50 50 45 65 50 46 50 50 50 50 51 50 50 50 50 47 50 50 50 50 51 51 50 50 50 50 49 50 49 50 50 55 49 50 50 43 67 52 39 50 50 50 50 50 50 50 50 50 47 50 50 50 50 52 39 50 50 50 50 50 50 49 50 50 55 49 50 50 43 68 47 39 50 50 50 50 50 50 50 50 50 47 50 50 50 50 47 39 50 50 50 50 50 50 49 50 50 55 47 50 50 42 50 52 51 50 50 50 50 51 50 50 50 50 50 50 50 50 50 48 40 50 50 50 50 49 50 49 50 50 57 47 50 50 49 50 50 46 50 50 50 50 50 50 51 50 50 50 50 50 50 50 48 40 50 50 50 50 50 50 49 50 50 57 47 50 50 49 50 49 43 50 50 50 50 50 50 50 50 50 50 50 49 50 50 48 41 50 50 50 50 50 50 49 48 50 58 47 51 50 50 50 50 46 50 50 50 50 51 50 50 50 50 50 50 50 50 50 48 41 50 50 50 50 52 50 49 48 50 58 51 50 50 49 50 50 45 50 50 50 51 47 50 50 50 50 50 50 49 50 50 48 40 50 50 50 50 57 50 49 51 50 50 50 50 50 49 50 50 47 50 50 50 50 47 50 50 50 50 50 50 50 50 50 49 43 50 50 50 50 55 50 50 49 50 50 50 50 50 49 50 50 46 50 50 50 50 48 50 50 50 50 50 50 50 50 50 48 41 50 50 50 50 56 48 50 51 47 50 50 46 50 50 50 50 56 49 49 50 50 52 50 51 53 50 50 54 50 50 50 45 63 50 45 65 50 43 67 49 51 47 50 50 46 50 50 50 49 57 49 49 50 50 52 49 51 53 50 50 54 50 50 50 45 63 51 45 65 50 43 54 49 50 47 50 50 45 50 51 50 49 56 49 49 50 50 54 49 50 53 50 50 54 50 50 50 45 63 51 45 65 50 50 54 49 50 47 50 50 46 50 50 50 49 56 49 50 50 50 54 49 50 53 50 50 54 49 50 50 45 64 50 45 64 50 50 54 49 51 47 50 50 45 50 50 50 50 53 50 50 50 50 54 49 51 53 50 50 55 50 49 50 44 65 50 46 50 50 50 54 49 50 47 50 50 45 50 50 51 50 53 49 50 50 50 54 49 50 53 50 50 55 49 50 50 43 67 52 67 50 50 50 55 49 50 47 50 50 45 50 50 50 50 53 67 50 50 50 55 49 50 53 50 50 54 49 50 50 43 68 43 67 50 50 50 55 49 50 47 50 50 45 50 50 50 50 43 67 50 50 50 55 49 50 53 50 50 55 48 50 50 42 50 43 67 50 50 50 54 49 50 47 50 50 43 50 50 50 50 43 67 50 50 50 54 49 50 53 50 50 56 47 50 50 65 50 43 67 50 50 50 55 49 50 47 50 50 42 50 50 65 50 43 67 50 50 50 55 49 50 53 50 50 57 47 50 44 65 50 43 67 50 50 50 54 49 50 46 50 50 44 50 44 65 50 43 67 50 50 50 54 49 50 54 50 50 57 47 50 45 65 50 43 67 50 50 50 55 51 50 45 50 50 44 50 45 65 50 43 67 50 50 50 55 51 50 55 50 50 57 68 50 44 64 50 43 67 51 50 50 46 65 50 44 50 50 68 50 44 64 50 43 67 51 50 50 46 65 50 56 50 50 43 72 50 47 69 50 43 71 50 50 51 44 70 50 47 50 43 72 50 47 69 50 43 71 50 50 51 44 70 50 53 50 50 36 76 53 39 74 50 37 75 47 50 50 37 76 53 39 50 36 76 53 39 74 50 37 75 47 50 50 37 76 53 61