/* ------------------------------------------------------------------------------ perfhex.c: code to generate code for a hash for perfect hashing. (c) Bob Jenkins, December 31 1999 You may use this code in any way you wish, and it is free. No warranty. I hereby place this in the public domain. Source is http://burtleburtle.net/bob/c/perfhex.c The task of this file is to do the minimal amount of mixing needed to find distinct (a,b) for each key when each key is a distinct ub4. That means trying all possible ways to mix starting with the fastest. The output is those (a,b) pairs and code in the *final* structure for producing those pairs. ------------------------------------------------------------------------------ */ #ifndef STANDARD #include "standard.h" #endif #ifndef LOOKUPA #include "lookupa.h" #endif #ifndef RECYCLE #include "recycle.h" #endif #ifndef PERFECT #include "perfect.h" #endif /* * Find a perfect hash when there is only one key. Zero instructions. * Hint: the one key always hashes to 0 */ static void hexone(keys, final) key *keys; gencode *final; { /* 1 key: the hash is always 0 */ keys->a_k = 0; keys->b_k = 0; final->used = 1; sprintf(final->line[0], " ub4 rsl = 0;\n"); /* h1a: 37 */ } /* * Find a perfect hash when there are only two keys. Max 2 instructions. * There exists a bit that is different for the two keys. Test it. * Note that a perfect hash of 2 keys is automatically minimal. */ static void hextwo(keys, final) key *keys; gencode *final; { ub4 a = keys->hash_k; ub4 b = keys->next_k->hash_k; ub4 i; if (a == b) { printf("fatal error: duplicate keys\n"); exit(SUCCESS); } final->used = 1; /* one instruction */ if ((a&1) != (b&1)) { sprintf(final->line[0], " ub4 rsl = (val & 1);\n"); /* h2a: 3,4 */ return; } /* two instructions */ for (i=0; iline[0], " ub4 rsl = ((val << %ld) & 1);\n", i); } /* * find the value to xor to a and b and c to make none of them 3 * assert, (a,b,c) are three distinct values in (0,1,2,3). */ static ub4 find_adder(a,b,c) ub4 a; ub4 b; ub4 c; { return (a^b^c^3); } /* * Find a perfect hash when there are only three keys. Max 6 instructions. * * keys a,b,c. * There exists bit i such that a[i] != b[i]. * Either c[i] != a[i] or c[i] != b[i], assume c[i] != a[i]. * There exists bit j such that b[j] != c[j]. Note i != j. * Final hash should be no longer than val[i]^val[j]. * * A minimal perfect hash needs to xor one of 0,1,2,3 afterwards to cause * the hole to land on 3. find_adder() finds that constant */ static void hexthree(keys, final, form) key *keys; gencode *final; hashform *form; { ub4 a = keys->hash_k; ub4 b = keys->next_k->hash_k; ub4 c = keys->next_k->next_k->hash_k; ub4 i,j,x,y,z; final->used = 1; if (a == b || a == c || b == c) { printf("fatal error: duplicate keys\n"); exit(SUCCESS); } /* one instruction */ x = a&3; y = b&3; z = c&3; if (x != y && x != z && y != z) { if (form->perfect == NORMAL_HP || (x != 3 && y != 3 && z != 3)) { /* h3a: 0,1,2 */ sprintf(final->line[0], " ub4 rsl = (val & 3);\n"); } else { /* h3b: 0,3,2 */ sprintf(final->line[0], " ub4 rsl = ((val & 3) ^ %d);\n", find_adder(x,y,z)); } return; } x = a>>(UB4BITS-2); y = b>>(UB4BITS-2); z = c>>(UB4BITS-2); if (x != y && x != z && y != z) { if (form->perfect == NORMAL_HP || (x != 3 && y != 3 && z != 3)) { /* h3c: 3fffffff, 7fffffff, bfffffff */ sprintf(final->line[0], " ub4 rsl = (val >> %ld);\n", (ub4)(UB4BITS-2)); } else { /* h3d: 7fffffff, bfffffff, ffffffff */ sprintf(final->line[0], " ub4 rsl = ((val >> %ld) ^ %ld);\n", (ub4)(UB4BITS-2), find_adder(x,y,z)); } return; } /* two instructions */ for (i=0; ihighbit; ++i) { x = (a>>i)&3; y = (b>>i)&3; z = (c>>i)&3; if (x != y && x != z && y != z) { if (form->perfect == NORMAL_HP || (x != 3 && y != 3 && z != 3)) { /* h3e: ffff3fff, ffff7fff, ffffbfff */ sprintf(final->line[0], " ub4 rsl = ((val >> %ld) & 3);\n", i); } else { /* h3f: ffff7fff, ffffbfff, ffffffff */ sprintf(final->line[0], " ub4 rsl = (((val >> %ld) & 3) ^ %ld);\n", i, find_adder(x,y,z)); } return; } } /* three instructions */ for (i=0; i<=final->highbit; ++i) { x = (a+(a>>i))&3; y = (b+(b>>i))&3; z = (c+(c>>i))&3; if (x != y && x != z && y != z) { if (form->perfect == NORMAL_HP || (x != 3 && y != 3 && z != 3)) { /* h3g: 0x000, 0x001, 0x100 */ sprintf(final->line[0], " ub4 rsl = ((val+(val>>%ld))&3);\n", i); } else { /* h3h: 0x001, 0x100, 0x101 */ sprintf(final->line[0], " ub4 rsl = (((val+(val>>%ld))&3)^%ld);\n", i, find_adder(x,y,z)); } return; } } /* * Four instructions: I can prove this will always work. * * If the three values are distinct, there are two bits which * distinguish them. Choose the two such bits that are closest together. * If those bits are values 001 and 100 for those three values, * then there either aren't any bits in between * or the in-between bits aren't valued 001, 110, 100, 011, 010, or 101, * because that would violate the closest-together assumption. * So any in-between bits must be 000 or 111, and of 000 and 111 with * the distinguishing bits won't cause them to stop being distinguishing. */ for (i=final->lowbit; i<=final->highbit; ++i) { for (j=i; j<=final->highbit; ++j) { x = ((a>>i)^(a>>j))&3; y = ((b>>i)^(b>>j))&3; z = ((c>>i)^(c>>j))&3; if (x != y && x != z && y != z) { if (form->perfect == NORMAL_HP || (x != 3 && y != 3 && z != 3)) { /* h3i: 0x00, 0x04, 0x10 */ sprintf(final->line[0], " ub4 rsl = (((val>>%ld) ^ (val>>%ld)) & 3);\n", i, j); } else { /* h3j: 0x04, 0x10, 0x14 */ sprintf(final->line[0], " ub4 rsl = ((((val>>%ld) ^ (val>>%ld)) & 3) ^ %ld);\n", i, j, find_adder(x,y,z)); } return; } } } printf("fatal error: hexthree\n"); exit(SUCCESS); } /* * Check that a,b,c,d are some permutation of 0,1,2,3 * Assume that a,b,c,d are all have values less than 32. */ static int testfour(a,b,c,d) ub4 a; ub4 b; ub4 c; ub4 d; { ub4 mask = (1<hash_k; ub4 b = keys->next_k->hash_k; ub4 c = keys->next_k->next_k->hash_k; ub4 d = keys->next_k->next_k->next_k->hash_k; ub4 w,x,y,z; ub4 i,j,k; if (a==b || a==c || a==d || b==c || b==d || c==d) { printf("fatal error: Duplicate keys\n"); exit(SUCCESS); } final->used = 1; /* one instruction */ if ((final->diffbits & 3) == 3) { w = a&3; x = b&3; y = c&3; z = d&3; if (testfour(w,x,y,z)) { sprintf(final->line[0], " ub4 rsl = (val & 3);\n"); /* h4a: 0,1,2,3 */ return; } } if (((final->diffbits >> (UB4BITS-2)) & 3) == 3) { w = a>>(UB4BITS-2); x = b>>(UB4BITS-2); y = c>>(UB4BITS-2); z = d>>(UB4BITS-2); if (testfour(w,x,y,z)) { /* h4b: 0fffffff, 4fffffff, 8fffffff, cfffffff */ sprintf(final->line[0], " ub4 rsl = (val >> %ld);\n", (ub4)(UB4BITS-2)); return; } } /* two instructions */ for (i=final->lowbit; ihighbit; ++i) { if (((final->diffbits >> i) & 3) == 3) { w = (a>>i)&3; x = (b>>i)&3; y = (c>>i)&3; z = (d>>i)&3; if (testfour(w,x,y,z)) { /* h4c: 0,2,4,6 */ sprintf(final->line[0], " ub4 rsl = ((val >> %ld) & 3);\n", i); return; } } } /* three instructions (linear with the number of diffbits) */ if ((final->diffbits & 3) != 0) { for (i=final->lowbit; i<=final->highbit; ++i) { if (((final->diffbits >> i) & 3) != 0) { w = (a+(a>>i))&3; x = (b+(b>>i))&3; y = (c+(c>>i))&3; z = (d+(d>>i))&3; if (testfour(w,x,y,z)) { /* h4d: 0,1,2,4 */ sprintf(final->line[0], " ub4 rsl = ((val + (val >> %ld)) & 3);\n", i); return; } w = (a-(a>>i))&3; x = (b-(b>>i))&3; y = (c-(c>>i))&3; z = (d-(d>>i))&3; if (testfour(w,x,y,z)) { /* h4e: 0,1,3,5 */ sprintf(final->line[0], " ub4 rsl = ((val - (val >> %ld)) & 3);\n", i); return; } /* h4f: ((val>>k)-val)&3: redundant with h4e */ w = (a^(a>>i))&3; x = (b^(b>>i))&3; y = (c^(c>>i))&3; z = (d^(d>>i))&3; if (testfour(w,x,y,z)) { /* h4g: 3,4,5,8 */ sprintf(final->line[0], " ub4 rsl = ((val ^ (val >> %ld)) & 3);\n", i); return; } } } } /* four instructions (linear with the number of diffbits) */ if ((final->diffbits & 3) != 0) { for (i=final->lowbit; i<=final->highbit; ++i) { if ((((final->diffbits >> i) & 1) != 0) && ((final->diffbits & 2) != 0)) { w = (a&3)^((a>>i)&1); x = (b&3)^((b>>i)&1); y = (c&3)^((c>>i)&1); z = (d&3)^((d>>i)&1); if (testfour(w,x,y,z)) { /* h4h: 1,2,6,8 */ sprintf(final->line[0], " ub4 rsl = ((val & 3) ^ ((val >> %ld) & 1));\n", i); return; } w = (a&2)^((a>>i)&1); x = (b&2)^((b>>i)&1); y = (c&2)^((c>>i)&1); z = (d&2)^((d>>i)&1); if (testfour(w,x,y,z)) { /* h4i: 1,2,8,a */ sprintf(final->line[0], " ub4 rsl = ((val & 2) ^ ((val >> %ld) & 1));\n", i); return; } } if ((((final->diffbits >> i) & 2) != 0) && ((final->diffbits & 1) != 0)) { w = (a&3)^((a>>i)&2); x = (b&3)^((b>>i)&2); y = (c&3)^((c>>i)&2); z = (d&3)^((d>>i)&2); if (testfour(w,x,y,z)) { /* h4j: 0,1,3,4 */ sprintf(final->line[0], " ub4 rsl = ((val & 3) ^ ((val >> %ld) & 2));\n", i); return; } w = (a&1)^((a>>i)&2); x = (b&1)^((b>>i)&2); y = (c&1)^((c>>i)&2); z = (d&1)^((d>>i)&2); if (testfour(w,x,y,z)) { /* h4k: 1,4,7,8 */ sprintf(final->line[0], " ub4 rsl = ((val & 1) ^ ((val >> %ld) & 2));\n", i); return; } } } } /* four instructions (quadratic in the number of diffbits) */ for (i=final->lowbit; i<=final->highbit; ++i) { if (((final->diffbits >> i) & 1) == 1) { for (j=final->lowbit; j<=final->highbit; ++j) { if (((final->diffbits >> j) & 3) != 0) { /* test + */ w = ((a>>i)+(a>>j))&3; x = ((b>>i)+(a>>j))&3; y = ((c>>i)+(a>>j))&3; z = ((d>>i)+(a>>j))&3; if (testfour(w,x,y,z)) { /* h4l: testcase? */ sprintf(final->line[0], " ub4 rsl = (((val >> %ld) + (val >> %ld)) & 3);\n", i, j); return; } /* test - */ w = ((a>>i)-(a>>j))&3; x = ((b>>i)-(a>>j))&3; y = ((c>>i)-(a>>j))&3; z = ((d>>i)-(a>>j))&3; if (testfour(w,x,y,z)) { /* h4m: testcase? */ sprintf(final->line[0], " ub4 rsl = (((val >> %ld) - (val >> %ld)) & 3);\n", i, j); return; } /* test ^ */ w = ((a>>i)^(a>>j))&3; x = ((b>>i)^(a>>j))&3; y = ((c>>i)^(a>>j))&3; z = ((d>>i)^(a>>j))&3; if (testfour(w,x,y,z)) { /* h4n: testcase? */ sprintf(final->line[0], " ub4 rsl = (((val >> %ld) ^ (val >> %ld)) & 3);\n", i, j); return; } } } } } /* five instructions (quadratic in the number of diffbits) */ for (i=final->lowbit; i<=final->highbit; ++i) { if (((final->diffbits >> i) & 1) != 0) { for (j=final->lowbit; j<=final->highbit; ++j) { if (((final->diffbits >> j) & 3) != 0) { w = ((a>>j)&3)^((a>>i)&1); x = ((b>>j)&3)^((b>>i)&1); y = ((c>>j)&3)^((c>>i)&1); z = ((d>>j)&3)^((d>>i)&1); if (testfour(w,x,y,z)) { /* h4o: 0,4,8,a */ sprintf(final->line[0], " ub4 rsl = (((val >> %ld) & 3) ^ ((val >> %ld) & 1));\n", j, i); return; } w = ((a>>j)&2)^((a>>i)&1); x = ((b>>j)&2)^((b>>i)&1); y = ((c>>j)&2)^((c>>i)&1); z = ((d>>j)&2)^((d>>i)&1); if (testfour(w,x,y,z)) { /* h4p: 0x04, 0x08, 0x10, 0x14 */ sprintf(final->line[0], " ub4 rsl = (((val >> %ld) & 2) ^ ((val >> %ld) & 1));\n", j, i); return; } } if (i==0) { w = ((a>>j)^(a<<1))&3; x = ((b>>j)^(b<<1))&3; y = ((c>>j)^(c<<1))&3; z = ((d>>j)^(d<<1))&3; } else { w = ((a>>j)&3)^((a>>(i-1))&2); x = ((b>>j)&3)^((b>>(i-1))&2); y = ((c>>j)&3)^((c>>(i-1))&2); z = ((d>>j)&3)^((d>>(i-1))&2); } if (testfour(w,x,y,z)) { if (i==0) /* h4q: 0,4,5,8 */ { sprintf(final->line[0], " ub4 rsl = (((val >> %ld) ^ (val << 1)) & 3);\n", j); } else if (i==1) /* h4r: 0x01,0x09,0x0b,0x10 */ { sprintf(final->line[0], " ub4 rsl = (((val >> %ld) & 3) ^ (val & 2));\n", j); } else /* h4s: 0,2,6,8 */ { sprintf(final->line[0], " ub4 rsl = (((val >> %ld) & 3) ^ ((val >> %ld) & 2));\n", j, (i-1)); } return; } w = ((a>>j)&1)^((a>>i)&2); x = ((b>>j)&1)^((b>>i)&2); y = ((c>>j)&1)^((c>>i)&2); z = ((d>>j)&1)^((d>>i)&2); if (testfour(w,x,y,z)) /* h4t: 0x20,0x14,0x10,0x06 */ { sprintf(final->line[0], " ub4 rsl = (((val >> %ld) & 1) ^ ((val >> %ld) & 2));\n", j, i); return; } } } } /* * OK, bring out the big guns. * There exist three bits i,j,k which distinguish a,b,c,d. * i^(j<<1)^(k*q) is guaranteed to work for some q in {0,1,2,3}, * proven by exhaustive search of all (8 choose 4) cases. * Find three such bits and try the 4 cases. * Linear with the number of diffbits. * Some cases below may duplicate some cases above. I did it that way * so that what is below is guaranteed to work, no matter what was * attempted above. * The generated hash is at most 10 instructions. */ for (i=final->lowbit; i>i)&1; z = (d>>i)&1; if (y != z) break; } for (j=final->lowbit; j>i)&1)^(((b>>j)&1)<<1); y = ((c>>i)&1)^(((c>>j)&1)<<1); z = ((d>>i)&1)^(((d>>j)&1)<<1); if (x != y && x != z && y != z) break; } for (k=final->lowbit; k>i)&1)^(((a>>j)&1)<<1)^(((a>>k)&1)<<2); x = ((b>>i)&1)^(((b>>j)&1)<<1)^(((b>>k)&1)<<2); y = ((c>>i)&1)^(((c>>j)&1)<<1)^(((c>>k)&1)<<2); z = ((d>>i)&1)^(((d>>j)&1)<<1)^(((d>>k)&1)<<2); if (w != x && w != y && w != z && x != y && x != z && y != z) break; } /* Assert: bits i,j,k were found which distinguish a,b,c,d */ if (i==UB4BITS || j==UB4BITS || k==UB4BITS) { printf("Fatal error: hexfour(), i %ld j %ld k %ld\n", i,j,k); exit(SUCCESS); } /* now try the four cases */ { ub4 m,n,o,p; /* if any bit has two 1s and two 0s, make that bit o */ if (((a>>i)&1)+((b>>i)&1)+((c>>i)&1)+((d>>i)&1) != 2) { m=j; n=k; o=i; } else if (((a>>j)&1)+((b>>j)&1)+((c>>j)&1)+((d>>j)&1) != 2) { m=i; n=k; o=j; } else { m=i; n=j; o=k; } if (m > n) {p=m; m=n; n=p; } /* guarantee m < n */ /* printf("m %ld n %ld o %ld %ld %ld %ld %ld\n", m, n, o, w,x,y,z); */ /* seven instructions, multiply bit o by 1 */ w = (((a>>m)^(a>>o))&1)^((a>>(n-1))&2); x = (((b>>m)^(b>>o))&1)^((b>>(n-1))&2); y = (((c>>m)^(c>>o))&1)^((c>>(n-1))&2); z = (((d>>m)^(d>>o))&1)^((d>>(n-1))&2); if (testfour(w,x,y,z)) { if (m>o) {p=m; m=o; o=p;} /* make sure m < o and m < n */ if (m==0) /* 0,2,8,9 */ { sprintf(final->line[0], " ub4 rsl = (((val^(val>>%ld))&1)^((val>>%ld)&2));\n", o, n-1); } else /* 0x00,0x04,0x10,0x12 */ { sprintf(final->line[0], " ub4 rsl = ((((val>>%ld) ^ (val>>%ld)) & 1) ^ ((val>>%ld) & 2));\n", m, o, n-1); } return; } /* six to seven instructions, multiply bit o by 2 */ w = ((a>>m)&1)^((((a>>n)^(a>>o))&1)<<1); x = ((b>>m)&1)^((((b>>n)^(b>>o))&1)<<1); y = ((c>>m)&1)^((((c>>n)^(c>>o))&1)<<1); z = ((d>>m)&1)^((((d>>n)^(d>>o))&1)<<1); if (testfour(w,x,y,z)) { if (m==o-1) {p=n; n=o; o=p;} /* make m==n-1 if possible */ if (m==0) /* 0,1,5,8 */ { sprintf(final->line[0], " ub4 rsl = ((val & 1) ^ (((val>>%ld) ^ (val>>%ld)) & 2));\n", n-1, o-1); } else if (o==0) /* 0x00,0x04,0x05,0x10 */ { sprintf(final->line[0], " ub4 rsl = (((val>>%ld) & 2) ^ (((val>>%ld) ^ val) & 1));\n", m-1, n); } else /* 0x00,0x02,0x0a,0x10 */ { sprintf(final->line[0], " ub4 rsl = (((val>>%ld) & 1) ^ (((val>>%ld) ^ (val>>%ld)) & 2));\n", m, n-1, o-1); } return; } /* multiplying by 3 is a pain: seven or eight instructions */ w = (((a>>m)&1)^((a>>(n-1))&2))^((a>>o)&1)^(((a>>o)&1)<<1); x = (((b>>m)&1)^((b>>(n-1))&2))^((b>>o)&1)^(((b>>o)&1)<<1); y = (((c>>m)&1)^((c>>(n-1))&2))^((c>>o)&1)^(((c>>o)&1)<<1); z = (((d>>m)&1)^((d>>(n-1))&2))^((d>>o)&1)^(((d>>o)&1)<<1); if (testfour(w,x,y,z)) { final->used = 2; sprintf(final->line[0], " ub4 b = (val >> %ld) & 1;\n", o); if (m==o-1 && m==0) /* 0x02,0x10,0x11,0x18 */ { sprintf(final->line[1], " ub4 rsl = ((val & 3) ^ ((val >> %ld) & 2) ^ b);\n", n-1); } else if (m==o-1) /* 0,4,6,c */ { sprintf(final->line[1], " ub4 rsl = (((val >> %ld) & 3) ^ ((val >> %ld) & 2) ^ b);\n", m, n-1); } else if (m==n-1 && m==0) /* 02,0a,0b,18 */ { sprintf(final->line[1], " ub4 rsl = ((val & 3) ^ b ^ (b << 1));\n"); } else if (m==n-1) /* 0,2,4,8 */ { sprintf(final->line[1], " ub4 rsl = (((val >> %ld) & 3) ^ b ^ (b << 1));\n", m); } else if (o==n-1 && m==0) /* h4am: not reached */ { sprintf(final->line[1], " ub4 rsl = ((val & 1) ^ ((val >> %ld) & 3) ^ (b <<1 ));\n", o); } else if (o==n-1) /* 0x00,0x02,0x08,0x10 */ { sprintf(final->line[1], " ub4 rsl = (((val >> %ld) & 1) ^ ((val >> %ld) & 3) ^ (b << 1));\n", m, o); } else if ((m != o-1) && (m != n-1) && (o != m-1) && (o != n-1)) { final->used = 3; sprintf(final->line[0], " ub4 newval = val & 0x%lx;\n", (((ub4)1<line[1], " ub4 b = -newval;\n"); } else /* 0x00,0x04,0x09,0x10 */ { sprintf(final->line[1], " ub4 b = -(newval >> %ld);\n", o); } if (m==0) /* 0x00,0x04,0x09,0x10 */ { sprintf(final->line[2], " ub4 rsl = ((newval ^ (newval>>%ld) ^ b) & 3);\n", n-1); } else /* 0x00,0x03,0x04,0x10 */ { sprintf(final->line[2], " ub4 rsl = (((newval>>%ld) ^ (newval>>%ld) ^ b) & 3);\n", m, n-1); } } else if (o == m-1) { if (o==0) /* 0x02,0x03,0x0a,0x10 */ { sprintf(final->line[0], " ub4 b = (val<<1) & 2;\n"); } else if (o==1) /* 0x00,0x02,0x04,0x10 */ { sprintf(final->line[0], " ub4 b = val & 2;\n"); } else /* 0x00,0x04,0x08,0x20 */ { sprintf(final->line[0], " ub4 b = (val>>%ld) & 2;\n", o-1); } if (o==0) /* 0x02,0x03,0x0a,0x10 */ { sprintf(final->line[1], " ub4 rsl = ((val & 3) ^ ((val>>%ld) & 1) ^ b);\n", n); } else /* 0x00,0x02,0x04,0x10 */ { sprintf(final->line[1], " ub4 rsl = (((val>>%ld) & 3) ^ ((val>>%ld) & 1) ^ b);\n", o, n); } } else /* h4ax: 10 instructions, but not reached */ { sprintf(final->line[1], " ub4 rsl = (((val>>%ld) & 1) ^ ((val>>%ld) & 2) ^ b ^ (b<<1));\n", m, n-1); } return; } /* five instructions, multiply bit o by 0, covered before the big guns */ w = ((a>>m)&1)^(a>>(n-1)&2); x = ((b>>m)&1)^(b>>(n-1)&2); y = ((c>>m)&1)^(c>>(n-1)&2); z = ((d>>m)&1)^(d>>(n-1)&2); if (testfour(w,x,y,z)) { /* h4v, not reached */ sprintf(final->line[0], " ub4 rsl = (((val>>%ld) & 1) ^ ((val>>%ld) & 2));\n", m, n-1); return; } } printf("fatal error: bug in hexfour!\n"); exit(SUCCESS); return; } /* test if a_k is distinct and in range for all keys */ static int testeight(keys, badmask) key *keys; /* keys being hashed */ ub1 badmask; /* used for minimal perfect hashing */ { ub1 mask = badmask; key *mykey; for (mykey=keys; mykey; mykey=mykey->next_k) { if (bit(mask, 1<a_k)) return FALSE; bis(mask, 1<a_k); } return TRUE; } /* * Try to find a perfect hash when there are five to eight keys. * * We can't deterministically find a perfect hash, but there's a reasonable * chance we'll get lucky. Give it a shot. Return TRUE if we succeed. */ static int hexeight(keys, nkeys, final, form) key *keys; ub4 nkeys; gencode *final; hashform *form; { key *mykey; /* walk through the keys */ ub4 i,j,k; ub1 badmask; printf("hexeight\n"); /* what hash values should never be used? */ badmask = 0; if (form->perfect == MINIMAL_HP) { for (i=nkeys; i<8; ++i) bis(badmask,(1<next_k) mykey->a_k = mykey->hash_k & 7; if (testeight(keys, badmask)) { /* h8a */ final->used = 1; sprintf(final->line[0], " ub4 rsl = (val & 7);\n"); return TRUE; } /* two instructions */ for (i=final->lowbit; i<=final->highbit-2; ++i) { for (mykey=keys; mykey; mykey=mykey->next_k) mykey->a_k = (mykey->hash_k >> i) & 7; if (testeight(keys, badmask)) { /* h8b */ final->used = 1; sprintf(final->line[0], " ub4 rsl = ((val >> %ld) & 7);\n", i); return TRUE; } } /* four instructions */ for (i=final->lowbit; i<=final->highbit; ++i) { for (j=i+1; j<=final->highbit; ++j) { for (mykey=keys; mykey; mykey=mykey->next_k) mykey->a_k = ((mykey->hash_k >> i)+(mykey->hash_k >> j)) & 7; if (testeight(keys, badmask)) { final->used = 1; if (i == 0) /* h8c */ sprintf(final->line[0], " ub4 rsl = ((val + (val >> %ld)) & 7);\n", j); else /* h8d */ sprintf(final->line[0], " ub4 rsl = (((val >> %ld) + (val >> %ld)) & 7);\n", i, j); return TRUE; } for (mykey=keys; mykey; mykey=mykey->next_k) mykey->a_k = ((mykey->hash_k >> i)^(mykey->hash_k >> j)) & 7; if (testeight(keys, badmask)) { final->used = 1; if (i == 0) /* h8e */ sprintf(final->line[0], " ub4 rsl = ((val ^ (val >> %ld)) & 7);\n", j); else /* h8f */ sprintf(final->line[0], " ub4 rsl = (((val >> %ld) ^ (val >> %ld)) & 7);\n", i, j); return TRUE; } for (mykey=keys; mykey; mykey=mykey->next_k) mykey->a_k = ((mykey->hash_k >> i)-(mykey->hash_k >> j)) & 7; if (testeight(keys, badmask)) { final->used = 1; if (i == 0) /* h8g */ sprintf(final->line[0], " ub4 rsl = ((val - (val >> %ld)) & 7);\n", j); else /* h8h */ sprintf(final->line[0], " ub4 rsl = (((val >> %ld) - (val >> %ld)) & 7);\n", i, j); return TRUE; } } } /* six instructions */ for (i=final->lowbit; i<=final->highbit; ++i) { for (j=i+1; j<=final->highbit; ++j) { for (k=j+1; k<=final->highbit; ++k) { for (mykey=keys; mykey; mykey=mykey->next_k) mykey->a_k = ((mykey->hash_k >> i) + (mykey->hash_k >> j) + (mykey->hash_k >> k)) & 7; if (testeight(keys, badmask)) { /* h8i */ final->used = 1; sprintf(final->line[0], " ub4 rsl = (((val >> %ld) + (val >> %ld) + (val >> %ld)) & 7);\n", i, j, k); return TRUE; } } } } return FALSE; } /* * Guns aren't enough. Bring out the Bomb. Use tab[]. * This finds the initial (a,b) when we need to use tab[]. * * We need to produce a different (a,b) every time this is called. Try all * reasonable cases, fastest first. * * The initial mix (which this determines) can be filled into final starting * at line[1]. val is set and a,b are declared. The final hash (at line[7]) * is a^tab[b] or a^scramble[tab[b]]. * * The code will probably look like this, minus some stuff: * val += CONSTANT; * val ^= (val<<16); * val += (val>>8); * val ^= (val<<4); * b = (val >> l) & 7; * a = (val + (val<> 29; * return a^scramble[tab[b]]; * Note that *a* and tab[b] will be computed in parallel by most modern chips. * * final->i is the current state of the state machine. * final->j and final->k are counters in the loops the states simulate. */ static void hexn(keys, salt, alen, blen, final) key *keys; ub4 salt; ub4 alen; ub4 blen; gencode *final; { key *mykey; ub4 highbit = final->highbit; ub4 lowbit = final->lowbit; ub4 alog = mylog2(alen); ub4 blog = mylog2(blen); for (;;) { switch(final->i) { case 1: /* a = val>>30; b=val&3 */ for (mykey=keys; mykey; mykey=mykey->next_k) { mykey->a_k = (mykey->hash_k << (UB4BITS-(highbit+1)))>>(UB4BITS-alog); mykey->b_k = (mykey->hash_k >> lowbit) & (blen-1); } if (lowbit == 0) /* hna */ sprintf(final->line[5], " b = (val & 0x%lx);\n", blen-1); else /* hnb */ sprintf(final->line[5], " b = ((val >> %ld) & 0x%lx);\n", lowbit, blen-1); if (highbit+1 == UB4BITS) /* hnc */ sprintf(final->line[6], " a = (val >> %ld);\n", UB4BITS-alog); else /* hnd */ sprintf(final->line[6], " a = ((val << %ld ) >> %ld);\n", UB4BITS-(highbit+1), UB4BITS-alog); ++final->i; return; case 2: /* a = val&3; b=val>>30 */ for (mykey=keys; mykey; mykey=mykey->next_k) { mykey->a_k = (mykey->hash_k >> lowbit) & (alen-1); mykey->b_k = (mykey->hash_k << (UB4BITS-(highbit+1)))>>(UB4BITS-blog); } if (highbit+1 == UB4BITS) /* hne */ sprintf(final->line[5], " b = (val >> %ld);\n", UB4BITS-blog); else /* hnf */ sprintf(final->line[5], " b = ((val << %ld ) >> %ld);\n", UB4BITS-(highbit+1), UB4BITS-blog); if (lowbit == 0) /* hng */ sprintf(final->line[6], " a = (val & 0x%lx);\n", alen-1); else /* hnh */ sprintf(final->line[6], " a = ((val >> %ld) & 0x%lx);\n", lowbit, alen-1); ++final->i; return; case 3: /* * cases 3,4,5: * for (k=lowbit; k<=highbit; ++k) * for (j=lowbit; j<=highbit; ++j) * b = (val>>j)&3; * a = (val<>30; */ final->k = lowbit; final->j = lowbit; ++final->i; break; case 4: if (!(final->j < highbit)) { ++final->i; break; } for (mykey=keys; mykey; mykey=mykey->next_k) { mykey->b_k = (mykey->hash_k >> (final->j)) & (blen-1); mykey->a_k = (mykey->hash_k << (UB4BITS-final->k-1)) >> (UB4BITS-alog); } if (final->j == 0) /* hni */ sprintf(final->line[5], " b = val & 0x%lx;\n", blen-1); else if (blog+final->j == UB4BITS) /* hnja */ sprintf(final->line[5], " b = val >> %ld;\n", final->j); else sprintf(final->line[5], " b = (val >> %ld) & 0x%lx;\n", /* hnj */ final->j, blen-1); if (UB4BITS-final->k-1 == 0) /* hnk */ sprintf(final->line[6], " a = (val >> %ld);\n", UB4BITS-alog); else /* hnl */ sprintf(final->line[6], " a = ((val << %ld) >> %ld);\n", UB4BITS-final->k-1, UB4BITS-alog); while (++final->j < highbit) { if (((final->diffbits>>(final->j)) & (blen-1)) > 2) break; } return; case 5: while (++final->k < highbit) { if ((((final->diffbits<<(UB4BITS-final->k-1))>>alog) & (alen-1)) > 0) break; } if (!(final->k < highbit)) { ++final->i; break; } final->j = lowbit; final->i = 4; break; case 6: /* * cases 6,7,8: * for (k=0; k> 16); * val += (val << 8); * val ^= (val >> 4); * b = (val >> j) & 3; * a = (val + (val << k)) >> 30; */ final->k = 0; final->j = 0; ++final->i; break; case 7: /* Just do something that will surely work */ { ub4 addk = 0x9e3779b9*salt; if (!(final->j <= UB4BITS-blog)) { ++final->i; break; } for (mykey=keys; mykey; mykey=mykey->next_k) { ub4 val = mykey->hash_k + addk; if (final->highbit+1 - final->lowbit > 16) val ^= (val >> 16); if (final->highbit+1 - final->lowbit > 8) val += (val << 8); val ^= (val >> 4); mykey->b_k = (val >> final->j) & (blen-1); if (final->k == 0) mykey->a_k = val >> (UB4BITS-alog); else mykey->a_k = (val + (val << final->k)) >> (UB4BITS-alog); } sprintf(final->line[1], " val += 0x%lx;\n", addk); if (final->highbit+1 - final->lowbit > 16) /* hnm */ sprintf(final->line[2], " val ^= (val >> 16);\n"); if (final->highbit+1 - final->lowbit > 8) /* hnn */ sprintf(final->line[3], " val += (val << 8);\n"); sprintf(final->line[4], " val ^= (val >> 4);\n"); if (final->j == 0) /* hno: don't know how to reach this */ sprintf(final->line[5], " b = val & 0x%lx;\n", blen-1); else /* hnp */ sprintf(final->line[5], " b = (val >> %ld) & 0x%lx;\n", final->j, blen-1); if (final->k == 0) /* hnq */ sprintf(final->line[6], " a = val >> %ld;\n", UB4BITS-alog); else /* hnr */ sprintf(final->line[6], " a = (val + (val << %ld)) >> %ld;\n", final->k, UB4BITS-alog); ++final->j; return; } case 8: ++final->k; if (!(final->k <= UB4BITS-alog)) { ++final->i; break; } final->j = 0; final->i = 7; break; case 9: final->i = 6; break; } } } /* find the highest and lowest bit where any key differs */ static void setlow(keys, final) key *keys; gencode *final; { ub4 lowbit; ub4 highbit; ub4 i; key *mykey; ub4 firstkey; /* mark the interesting bits in final->mask */ final->diffbits = (ub4)0; if (keys) firstkey = keys->hash_k; for (mykey=keys; mykey!=(key *)0; mykey=mykey->next_k) final->diffbits |= (firstkey ^ mykey->hash_k); /* find the lowest interesting bit */ for (i=0; idiffbits & (((ub4)1)<lowbit = i; /* find the highest interesting bit */ for (i=UB4BITS; --i; ) if (final->diffbits & (((ub4)1)<highbit = i; } /* * Initialize (a,b) when keys are integers. * * Normally there's an initial hash which produces a number. That hash takes * an initializer. Changing the initializer causes the initial hash to * produce a different (uniformly distributed) number without any extra work. * * Well, here we start with a number. There's no initial hash. Any mixing * costs extra work. So we go through a lot of special cases to minimize the * mixing needed to get distinct (a,b). For small sets of keys, it's often * fastest to skip the final hash and produce the perfect hash from the number * directly. * * The target user for this is switch statement optimization. The common case * is 3 to 16 keys, and instruction counts matter. The competition is a * binary tree of branches. * * Return TRUE if we found a perfect hash and no more work is needed. * Return FALSE if we just did an initial hash and more work is needed. */ int inithex(keys, nkeys, alen, blen, smax, salt, final, form) key *keys; /* list of all keys */ ub4 nkeys; /* number of keys to hash */ ub4 alen; /* (a,b) has a in 0..alen-1, a power of 2 */ ub4 blen; /* (a,b) has b in 0..blen-1, a power of 2 */ ub4 smax; /* maximum range of computable hash values */ ub4 salt; /* used to initialize the hash function */ gencode *final; /* output, code for the final hash */ hashform *form; /* user directives */ { setlow(keys, final); switch (nkeys) { case 1: hexone(keys, final); return TRUE; case 2: hextwo(keys, final); return TRUE; case 3: hexthree(keys, final, form); return TRUE; case 4: hexfour(keys, final); return TRUE; case 5: case 6: case 7: case 8: if (salt == 1 && /* first time through */ hexeight(keys, nkeys, final, form)) /* get lucky, don't need tab[] ? */ return TRUE; /* fall through */ default: if (salt == 1) { final->used = 8; final->i = 1; final->j = final->k = final->l = final->m = final->n = final->o = 0; sprintf(final->line[0], " ub4 a, b, rsl;\n"); sprintf(final->line[1], "\n"); sprintf(final->line[2], "\n"); sprintf(final->line[3], "\n"); sprintf(final->line[4], "\n"); sprintf(final->line[5], "\n"); sprintf(final->line[6], "\n"); if (blen < USE_SCRAMBLE) { /* hns */ sprintf(final->line[7], " rsl = (a^tab[b]);\n"); } else { /* hnt */ sprintf(final->line[7], " rsl = (a^scramble[tab[b]]);\n"); } } hexn(keys, salt, alen, blen, final); return FALSE; } }